Karakterisasi Fe₂O₃ Hasil Sintesis Hijau Menggunakan Ekstrak Buah Dengen (Dillenia serrata)

Characterization of Fe₂O₃ from Green Synthesis Using Dengen Fruit Extract (Dillenia serrata)

Authors

  • Nurmalasari Institut Teknologi Bacharuddin Jusuf Habibie
  • Nurhalima
  • Suaedi
  • Suriyanto Bakri
  • Syukrika Putri
  • Yusri Prayitna

DOI:

https://doi.org/10.58227/jesta.v2i2.204

Keywords:

Fe2O3, Nanoparticle, Dillenia Serrata;, XRF

Abstract

FeO has many functions, including as a pigment and as a semi-conductor material. The use of this material depends on its characteristics. In this study, the characterization of FeO nanoparticles produced from green synthesis was carried out. Dengen fruit extract was used as a chelating agent with iron sand raw material from the Pajallesang River, Palopo City. The synthesis was carried out using the sol-gel method at pH 4.7. The gel sample was calcined at temperatures of 600°C, 700°C, and 800°C, after which it was characterized using XRD and XRF. The average crystallite size of FeO particles in iron sand and after being synthesized at temperatures of 600°C, 700°C, and 800°C were respectively 40.09 nm, 36.67 nm, 31.46 nm, and 69.04 nm. The increase in calcination temperature affects the FeO content, where the higher the temperature used, the lower the FeO content obtained. The FeO content in iron sand and after synthesis at temperatures of 600°C, 700°C, and 800°C were respectively 70.4%, 91.04%, 90.01%, and 88.82%

References

Ahmad, W., Joshi, H. C., Pandey, S., Kumar, V., & Verma, M. (2023). An overview of green methods for Fe2O3 nanoparticle synthesis and their applications. International Nano Letters, 13(2), 117–130. https://doi.org/10.1007/s40089-022-00386-w

Dwyer, F. (2012). Chelating Agents and Metal Chelates. Elsevier.

Fiorillo, F. (2004). Characterization and Measurement of Magnetic Materials. Academic Press.

Fouad, D. E., Zhang, C., Mekuria, T. D., Bi, C., Zaidi, A. A., & Shah, A. H. (2019). Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe2O3) nanoparticles: A comparative study. Ultrasonics Sonochemistry, 59, 104713. https://doi.org/10.1016/j.ultsonch.2019.104713

Haseena, S., Jayamani, N., Shanavas, S., Duraimurugan, J., Haija, M. A., Kumar, G. S., Kumar, A. S., Prabhuraj, T., Maadeswaran, P., & Acevedo, R. (2022). Bio-synthesize of photocatalytic Fe2O3 nanoparticles using Leucas aspera and Jatropha podagrica leaf extract for an effective removal of textile dye pollutants. Optik, 249, 168275. https://doi.org/10.1016/j.ijleo.2021.168275

Husain, H., Adi, W. A., Subaer, S., Taryana, Y., Setiawan, A., Putri, S. E., Klyusubun, W., & Wannapaiboon, S. (2024). Effect of calcination temperature on structure evolution of hematite nanoparticles. Physica Scripta, 99(6), 065974. https://doi.org/10.1088/1402-4896/ad48cd

Khalil, M. M., Gouda, M. M., Abbas, M. I., Abd-Elzaher, M., & El-Khatib, A. M. (2024). Impact of nano Fe2O3 on radiation parameters of epoxy reinforced with nano carbon. Scientific Reports, 14(1), 21940. https://doi.org/10.1038/s41598-024-73139-8

Li, J., Wu, Y., Yang, M., Yuan, Y., Yin, W., Peng, Q., Li, Y., & He, X. (2017). Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol-gel method. Journal of the American Ceramic Society, 100(12), 5460–5470. https://doi.org/10.1111/jace.15164

Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., & Gu, Z. (2013). Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics, 3(8), 595–615. https://doi.org/10.7150/thno.5366

Naz, S., Islam, M., Tabassum, S., Fernandes, N. F., Carcache de Blanco, E. J., & Zia, M. (2019). Green synthesis of hematite (α- Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. Journal of Molecular Structure, 1185, 1–7. https://doi.org/10.1016/j.molstruc.2019.02.088

Sahadevan, J., Sojiya, R., Padmanathan, N., Kulathuraan, K., Shalini, M. G., Sivaprakash, P., & Esakki Muthu, S. (2022). Magnetic property of Fe2O3 and Fe3O4 nanoparticle prepared by solvothermal process. Materials Today: Proceedings, 58, 895–897.https://doi.org/10.1016/j.matpr.2021.11.420

Saied, E., Salem, S. S., Al-Askar, A. A., Elkady, F. M., Arishi, A. A., & Hashem, A. H. (2022). Mycosynthesis of Hematite (α- Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities. Bioengineering, 9(8), Article 8. https://doi.org/10.3390/bioengineering9080397

Sajjad, A., Hussain, S., Jaffari, G. H., Hanif, S., Qureshi, M. N., & Zia, M. (2023). Fabrication of Hematite (α- Fe2O3) nanoparticles under different spectral lights transforms physio chemical, biological, and nanozymatic properties. Nano Trends, 2, 100010. https://doi.org/10.1016/j.nwnano.2023.100010

Saragi, T., Permana, B., Saputri, M., Rahayu, I., & Risdiana. (2018). Karakteristik Optik dan Kristal Nanopartikel Magnetit. Jurnal Ilmu dan Inovasi Fisika, 2(1), 53–56. https://doi.org/10.24198/jiif.v2i1.15438

Tahir, M., Fakhar-e-Alam, M., Atif, M., Mustafa, G., & Ali, Z. (2023). Investigation of optical, electrical and magnetic properties of hematite α- Fe2O3 nanoparticles via sol-gel and co-precipitation method. Journal of King Saud University - Science, 35(5), 102695. https://doi.org/10.1016/j.jksus.2023.102695

Utari, Maulidina, H., Arilasita, R., Widiyandari, H., Suharno, & Purnama, B. (2023). Citric acid concentration tune of structural and magnetic properties in hematite (α− Fe2O3) nanoparticles synthesized by sol−gel method. Materials Research Express, 10(3), 036101. https://doi.org/10.1088/2053-1591/acbf0c

Worawong, A., Jutarosaga, T., & Onreabroy, W. (2014). Influence of Calcination Temperature on Synthesis of Magnetite (Fe3O4) Nanoparticles by Sol-Gel Method. Advanced Materials Research, 979, 208–211. https://doi.org/10.4028/www.scientific.net/AMR.979.208

Xu, X., Liu, X., Wu, J., Zhang, C., Zhou, S., & Wu, C. (2021). Fabrication and characterization of porous mullite ceramics with ultra-low shrinkage and high porosity via sol-gel and solid state reaction methods.Ceramics International, 47(14), 20141–20150. https://doi.org/10.1016/j.ceramint.2021.04.020

Zhang, Y., Li, H., Gong, L., Dong, G., Shen, L., Wang, Y., & Li, Q. (2017). Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil–water systems. Journal of Environmental Sciences, 57, 329–337. https://doi.org/10.1016/j.jes.2017.01.007

Downloads

Published

2024-09-30