Distinguishing Algorith for Gold Deposit Types

Authors

  • Abdelhalim Mahmoud Fayoum University
  • Mansour Abdelsamad Fayoum University
  • Ahmed Taha Fayoum University
  • Ahmed Mansour Assiut University
  • Mariam Nassif Fayoum University
  • Sara Abdelfatah Fayoum University
  • Mera Saleeb Fayoum University
  • Rabee Khaled National Egyptian E-learning University

DOI:

https://doi.org/10.58227/jge.v3i2.184

Keywords:

Gold deposit classification, Gold exploration, Decision tree, Distinguishing algorithms,, Java

Abstract

The determination of gold deposit type holds a great economic significance since each gold deposit type displays its own grade and tonnage and consequently requires different exploration and exploitation strategies. The considerable diversity of gold deposits, combined with the distinctive features inherent to each type and the notable overlap among many deposits, renders the accurate classification of these deposits a complex endeavor. To differentiate between these deposit types, we collected geological, mineralogical, and geochemical characteristics, as well as ore-forming parameters, for 12 gold deposit types. A detailed classification scheme is utilized, covering four specific categories of gold deposits, namely orogenic, including greenstone-hosted, banded iron formation-hosted, and turbidite-hosted; reduced intrusion-related deposits; and oxidized intrusion-related gold deposits, which encompass Au-Cu-porphyry, Au-skarn, and high-sulfidation epithermal deposits, with a fourth class incorporating other deposit types, such as low-sulfidation epithermal, Carlin-type, and Au-volcanic massive sulfide deposits. The tabulated distinctive characteristics were used to construct a series of decision trees for gold deposit type identification. The distinguishing algorithm is formulated in the form of a Java computer application. Three decision trees are implemented for the purpose of ascertaining the type of gold deposit. If two decision trees yield a consensus on a particular type, the ore type identification is made accordingly. To validate the outcome, the user is prompted to respond to a series of questions pertaining to the identified type, with the accuracy rate of the responses must exceed 90%. Failure to meet this criterion will result in the decision tree being revisited, and the accurate data will need to be re-entered. 

References

Abd El Monsef, M., and A. Abdelnasser (2021), Ore-forming mechanism and its relationship with deformational and metamorphic episodes at Haimur gold mine, Nubian Shield, Egypt, Geological Magazine, 158(3), 518-536.

Adomako-Ansah, K., T. Mizuta, D. Ishiyama, and N. Q. Hammond (2017), Nature of ore-forming fluid and formation conditions of BIF-hosted gold mineralization in the Archean Amalia Greenstone Belt, South Africa: Constraints from fluid inclusion and stable isotope studies, Ore Geology Reviews, 89, 609-626.

An, F., and Y. Zhu (2018), Geology and geochemistry of the Early Permian Axi low-sulfidation epithermal gold deposit in North Tianshan (NW China), Ore Geology Reviews, 100, 12-30.

Andrianjakavah, P., S. Salvi, D. Béziat, D. Guillaume, M. Rakotondrazafy, and B. Moine (2007), Textural and fluid inclusion constraints on the origin of the banded-iron-formation-hosted gold deposits at Maevatanana, central Madagascar, Mineralium Deposita, 42, 385-398.

Angeles, C. A., S. Prihatmoko, and J. S. Walker (2002), Geology and alteration‐mineralization characteristics of the Cibaliung epithermal gold deposit, Banten, Indonesia, Resource Geology, 52(4), 329-339.

Arribas Jr, A. (1995), Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid, Mineralogical Association of Canada Short Course, 23, 419-454.

Bagby, W. C., and B. R. Berger (1985), Geologic characteristics of sediment-hosted, disseminated precious-metal deposits in the western United States.

Baker, T. (2002), Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits, Economic Geology, 97(5), 1111-1117.

Baker, T., and J. R. Lang (2001), Fluid inclusion characteristics of intrusion-related gold mineralization, Tombstone–Tungsten magmatic belt, Yukon Territory, Canada, Mineralium Deposita, 36, 563-582.

Bamford, R. W. (1972), The Mount Fubilan (Ok Tedi) porphyry copper deposit, Territory of Papua and New Guinea, Economic Geology, 67(8), 1019-1033.

Barley, M., and D. Groves (1992), Supercontinent cycles and the distribution of metal deposits through time, Geology, 20(4), 291-294.

Barrie, I. J., and J. L. Touret (1999), Fluid inclusion studies of gold-bearing quartz veins from the Yirisen deposit, Sula Mountains greenstone belt, Masumbiri, Sierra Leone, Ore Geology Reviews, 14(3-4), 203-225.

Barrie, C., M. Hannington, and W. Bleeker (1997), The giant Kidd Creek volcanic-associated massive sulfide deposit, Abitibi Subprovince, Canada.

Barton, M. (2014), Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems, Treatise on geochemistry, 515-541.

Barton, M. D. (2009), IOCG deposits: A Cordilleran perspective, paper presented at Proc. 11th Biennial SGA Meeting, Citeseer.

Barton, M. D., and D. A. Johnson (1996), Evaporitic-source model for igneous-related Fe oxide–(REE-Cu-Au-U) mineralization, Geology, 24(3), 259-262.

Barton, M. D., D. A. Johnson, D. C. Kreiner, and E. P. Jensen (2013), Vertical zoning and continuity in Fe oxide (-Cu-Au-Ag-Co-UP-REE)(or’IOCG’) systems: Cordilleran insights, paper presented at Proceedings of the 12th Biennial Meeting, Society for Geology Applied to Ore Deposits.

Berge, J. (2011), Paleoproterozoic, turbidite-hosted, gold deposits of the Ashanti gold belt (Ghana, West Africa): Comparative analysis of turbidite-hosted gold deposits and an updated genetic model, Ore Geology Reviews, 39(1-2), 91-100.

Berger, B., and W. Bagby (1991), The geology and origin of Carlin-type gold deposits, in Gold metallogeny and exploration, edited, pp. 210-248.

Berger, B. R., R. A. Ayuso, J. C. Wynn, and R. R. Seal II (2008), Preliminary model of porphyry copper depositsRep. 2331-1258, US Geological Survey.

Bodnar, R. (1995), Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits, Magma, fluid and ore deposit, 139-152.

Bodnar, R., and J. Cline (1991), Fluid inclusion petrology of porphyry copper deposits revisited: Re-interpretation of observed characteristics based on recent experimental and theoretical data, Plinius, 5, 24-25.

Bodnar, R., P. Lecumberri-Sanchez, D. Moncada, and M. Steele-MacInnis (2014), 13.5–Fluid inclusions in hydrothermal ore deposits, Treatise on geochemistry, 13, 119-142.

Boucher, R., A. Rossiter, R. Fraser, and D. Turnbull (2015), Review of the structural architecture of turbidite-hosted gold deposits, Victoria, Australia, Applied Earth Science, 124(3), 136-146.

Boulanger, R., G. Chi, T. Skulski, and S. Castonguay (2010), Characterization and evolution of fluids associated with the Cu-Au deposit of the Ming Mine, Rambler area, northeast Newfoundland, Canada, edited, GeoCanada.

Boyle, R. (1986), Gold deposits ini turbidite sequence: their geology, geochemistry and history of the theories of their origin, Turbidite-hosted Gold Deposits, SJ, 1-13

Bühn, B., R. V. Santos, M. A. Dardenne, and C. G. de Oliveira (2012), Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS, Chemical Geology, 312, 163-176.

Caddey, S. W., B. RL, T. Campbell, R. Reid, and R. Otto (1991), The Homestake gold mine, an early Proterozoic iron-formation-hosted gold deposit, Lawrence County, South Dakota, US Government Printing Office.

Campbell, A. R., and P. B. Larson (1998), Introduction to stable isotope applications in hydrothermal systems.

Castonguay, S., B. Dubé, P. Mercier-Langevin, V. McNicoll, W. Oswald, V. Janvier, and M. Malo (2015), Geological controls of BIF-hosted gold mineralization: Insights from the world-class Musselwhite (Ontario) and Meadowbank (Nunavut) deposits, Canada, paper presented at Mineral resources in a sustainable world, Proceeding book, 13 SGA Meeting, Nancy-France.

Catchpole, H., K. Kouzmanov, L. Fontboté, M. Guillong, and C. A. Heinrich (2011), Fluid evolution in zoned Cordilleran polymetallic veins—insights from microthermometry and LA-ICP-MS of fluid inclusions, Chemical Geology, 281(3-4), 293-304.

Chen, H. (2013), External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan, Ore Geology Reviews, 51, 74-78.

Chen, M. T., J. H. Wei, Y. J. Li, W. J. Shi, and N. Z. Liu (2020), Epithermal gold mineralization in Cretaceous volcanic belt, SE China: Insight from the Shangshangang deposit, Ore Geology Reviews, 118, 103355.

Chen, Y.-J., H.-Y. Chen, K. Zaw, F. Pirajno, and Z.-J. Zhang (2007), Geodynamic settings and tectonic model of skarn gold deposits in China: an overview, Ore Geology Reviews, 31(1-4), 139-169.

Corriveau, L., L. Ootes, H. Mumin, V. Jackson, V. Bennett, J. Cremer, B. Rivard, I. McMartin, G. Beaudoin, and B. Milkereit (2007), Alteration vectoring to IOCG (U) deposits in frontier volcano-plutonic terrains, Canada, paper presented at Proceedings of exploration, Citeseer.

Cox, D. P. (1986), Descriptive model of polymetallic veins, Mineral deposit models: US Geological Survey Bulletin, 1693, 125.

Cox, D. P., and D. A. Singer (1986), Mineral deposit modelsRep., USGPO.

Cox, S., S. Sun, M. Etheridge, V. Wall, and T. Potter (1995), Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine, central Victoria, Australia, Economic Geology, 90(6), 1722-1746.

Cox, S., V. Wall, M. Etheridge, and T. Potter (1991), Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria, Australia, Ore geology reviews, 6(5), 391-423.

de Haller, A., and L. s. Fontboté (2009), The Raúl-Condestable iron oxide copper-gold deposit, central coast of Peru: Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints, Economic Geology, 104(3), 365-384.

Dejonghe, L., B. Darras, G. Hughes, P. Muchez, J. S. Scoates, and D. Weis (2002), Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia, Mineralium Deposita, 37, 158-172.

DeWitt, E., J. Redden, A. B. Wilson, D. Buscher, and J. Dersch (1986), Mineral resource potential and geology of the Black Hills National Forest, South Dakota and Wyoming with a section on salable commoditiesRep., US Geological Survey.

Diment, R., and S. Craig (1998), Brewery Creek gold deposit, central Yukon, Yukon exploration and geology, 1998, 225-230.

Dubé, B., G. R. Dunning, and K. Lauziere (1998), Geology of the Hope Brook Mine, Newfoundland, Canada; a preserved late Proterozoic high-sulfidation epithermal gold deposit and its implications for exploration, Economic Geology, 93(4), 405-436.

Dubé, B., P. Gosselin, P. Mercier-Langevin, M. Hannington, and A. Galley (2007), Gold-rich volcanogenic massive sulphide deposits, Geological Association of Canada, Mineral Deposits Division, 75-94.

Dusel-Bacon, C., J. N. Aleinikoff, W. R. Premo, S. Paradis, and I. Lohr-Schmidt (2007), Tectonic setting and metallogenesis of volcanogenic massive sulfide deposits in the Bonnifield Mining District, Northern Alaska Range, Recent US Geological Survey Studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada—Results of a, B1-B7.

Einaudi, M., L. Meinert, and R. Newberry (1981), Skarn deposits.

Eisler, R. (2004), Gold concentrations in abiotic materials, plants, and animals: a synoptic review, Environmental monitoring and assessment, 90, 73-88.

Ettlinger, A. D., and L. D. Meinert (1991), Copper-gold skarn mineralization at the Veselyi mine, Siniukhinskoe district, Siberia, USSR, Economic Geology, 86(1), 185-194.

Fazel, E.T., Mehrabi, B., Zamanian, H. and Hayatolgheybi, M., (2023). Fluid inclusions and C–H–O–S–Pb isotope systematics of the Senj Mo–Cu deposit, Alborz magmatic belt, northern Iran: implications for fluid evolution and regional mineralization. Geological Magazine, 160(1), pp.1-21.

Fontboté, L., J. Vallance, A. Markowski, and M. Chiaradia (2005), Oxidized gold skarns in the Nambija District, Ecuador.

Forster, D. B., P. K. Seccombe, and D. Phillips (2004), Controls on skarn mineralization and alteration at the Cadia deposits, New South Wales, Australia, Economic Geology, 99(4), 761-788.

Franklin, J., and R. Thorpe (1982), Comparative metallogeny of the Superior, Slave and Churchill provinces, Precambrian sulphide deposits HS Robinson Memorial Vol, Geol Ass Can Spec Pap, 3-90.

Franklin, J., H. Gibson, I. Jonasson, and A. Galley (2005), Volcanogenic massive sulfide deposits: in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Economic Geology, 100th Anniversary Volume, The Economic Geology Publishing Company, 523-560.

Fyles, J. T. (1984), Geological setting of the Rossland mining camp, Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources.

Galley, A. G., M. D. Hannington, and I. Jonasson (2007), Volcanogenic massive sulphide deposits, Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, 5, 141-161.

Gao, Z., and T. Kwak (1995), Turbidite-hosted gold deposits in the Bendigo-Ballarat and Melbourne Zones, Australia. I. Geology, Mineralization, stable isotopes, and implications for exploration, International Geology Review, 37(10), 910-944.

Gill, S. B., S. J. Piercey, G. D. Layne, and G. Piercey (2019), Sulphur and lead isotope geochemistry of sulphide minerals from the Zn-Pb-Cu-Ag-Au Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, Canada, Ore Geology Reviews, 104, 422-435.

Goldfarb, R., L. Snee, L. Miller, and R. Newberry (1991), Rapid dewatering of the crust deduced from ages of mesothermal gold deposits, Nature, 354(6351), 296-298.

Goldfarb, R. J., and I. Pitcairn (2023), Orogenic gold: is a genetic association with magmatism realistic?, Mineralium Deposita, 58(1), 5-35.

Goldfarb, R. J., C. Hart, M. Miller, L. Miller, G. L. Farmer, and D. I. Groves (2000), The Tintina gold belt: a global perspective, British Columbia and Yukon Chamber of Mines, Special Volume, 2, 5-34.

Gregory, M. J. (2017), A fluid inclusion and stable isotope study of the Pebble porphyry copper-gold-molybdenum deposit, Alaska, Ore Geology Reviews, 80, 1279-1303.

Groves, D. I., F. P. Bierlein, L. D. Meinert, and M. W. Hitzman (2010), Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits, Economic Geology, 105(3), 641-654.

Groves, D. I., R. J. Goldfarb, M. Gebre-Mariam, S. Hagemann, and F. Robert (1998), Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore geology reviews, 13(1-5), 7-27.

Haeberlin, Y., R. Moritz, L. Fontboté, and M. Cosca (2004), Carboniferous orogenic gold deposits at Pataz, Eastern Andean Cordillera, Peru: geological and structural framework, paragenesis, alteration, and 40Ar/39Ar geochronology, Economic Geology, 99(1), 73-112.

Hagemann, S. G., and P. E. Brown (2000), Gold in 2000, Society of Economic Geologists.

Hammarstrom, J. M., B. B. Kotlyar, T. G. Theodore, J. E. Elliott, D. A. John, J. L. Doebrich, J. T. Nash, R. R. Carlson, G. K. Lee, and K. E. Livo (1995), Cu, Au, and Zn-Pb Skarn Deposits, Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models, US Geological Survey Open-File Report, 95-831.

Hannington, M., and P. Herzig (1993), Shallow submarine hydrothermal systems in modern island arc settings, Geological Association of Canada; v, 19, p, A40.

Hannington, M., K. Poulsen, J. Thompson, and R. Sillitoe (1997), Volcanogenic gold in the massive sulfide environment, in Barrie, C.T., and Hannington, M.D., eds., Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings: Reviews in Economic Geology 8, p. 325-356.

Hannington, M. D., C. Barrie, and W. Bleeker (1999), The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi subprovince, Canada: Summary and Synthesis.

Harris, A. C., S. D. Golding, and N. C. White (2005), Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids, Economic Geology, 100(5), 863-886.

Hart, C., and R. Goldfarb (2005), Distinguishing intrusion-related from orogenic gold systems, paper presented at New Zealand Minerals Conference Proceedings.

Hart, C. J. (2005), Classifying, distinguishing and exploring for intrusion-related gold systems, The Gangue, 87(1), 9.

Hart, C. J. (2007), Reduced intrusion-related gold systems, Mineral Deposits of Canada: A synthesis of Major deposit types, district metallogeny, the Evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 95-112.

Hayward, N., R. G. Skirrow, and T. Porter (2010), Geodynamic setting and controls on iron oxide Cu-Au (±U) ore in the Gawler Craton, South Australia, Hydrothermal iron oxide copper-gold and related deposits: A global perspective, 3, 105-131.

He, W.-Y., X.-X. Mo, Z.-H. He, N. C. White, J.-B. Chen, K.-H. Yang, R. Wang, X.-H. Yu, G.-C. Dong, and X.-F. Huang (2015), The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, southwest China, Economic Geology, 110(6), 1625-1641.

Heald, P., N. K. Foley, and D. O. Hayba (1987), Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types, Economic geology, 82(1), 1-26.

Hedenquist, J. W., and R. Sillitoe (2003), Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, Volcanic, geothermal, and ore-forming fluids, 315-343.

Heinrich, C. A., W. Halter, M. R. Landtwing, and T. Pettke (2005), The formation of economic porphyry copper (-gold) deposits: constraints from microanalysis of fluid and melt inclusions, Geological Society, London, Special Publications, 248(1), 247-263.

Hewitt, W., L. JF, R. Lorraway, K. Moule, R. PM, and S. HJ (1980), OK TEDI PROJECT-GEOLOGY OF PRINCIPAL ORE DEPOSITS.

Hitzman, M. W., and T. Porter (2000), Iron oxide-Cu-Au deposits: What, where, when, and why, Hydrothermal iron oxide copper-gold and related deposits: A global perspective, 1, 9-25.

Hitzman, M. W., N. Oreskes, and M. T. Einaudi (1992), Geological characteristics and tectonic setting of proterozoic iron oxide (Cu U Au REE) deposits, Precambrian research, 58(1-4), 241-287.

Hofstra, A. H., and J. S. Cline (2000), Characteristics and models for Carlin-type gold deposits.

Hunt, J. (2005), The geology and genesis of iron oxide-copper-gold mineralisation associated with Wernecke Breccia, Yukon, Canada, James Cook University.

Hunt, J., T. Baker, and D. Thorkelson (2007), A review of iron oxide copper-gold deposits, with focus on the Wernecke Breccias, Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification, Exploration and Mining Geology, 16(3-4), 209-232.

Huston, D. L. (2000), Gold in volcanic-hosted massive sulfide deposits: distribution, genesis, and exploration.

Hutchison, W., A. A. Finch, and A. J. Boyce (2020), The sulfur isotope evolution of magmatic-hydrothermal fluids: Insights into ore-forming processes, Geochimica et Cosmochimica Acta, 288, 176-198.

Ishihara, S. (1981), The granitoid series and mineralization.

Jensen, E. P., and M. D. Barton (2000), Gold deposits related to alkaline magmatism.

Jia, S., E. Wang, J. Fu, X. Wang, and W. Li (2019), Geology, fluid inclusions and isotope geochemistry of the Herenping gold deposit in the southern margin of the Yangtze Craton, China: a sediment-hosted reduced intrusion-related gold deposit?, Ore Geology Reviews, 107, 926-943.

Jia, Y., X. Li, and R. Kerrich (2001), Stable isotope (O, H, S, C, and N) systematics of quartz vein systems in the turbidite-hosted Central and North Deborah gold deposits of the Bendigo gold field, central Victoria, Australia: Constraints on the origin of ore-forming fluids, Economic Geology, 96(4), 705-721.

Jovic, S. M., D. M. Guido, I. B. Schalamuk, F. J. Ríos, C. C. Tassinari, and C. Recio (2011), Pingüino In-bearing polymetallic vein deposit, Deseado Massif, Patagonia, Argentina: characteristics of mineralization and ore-forming fluids, Mineralium Deposita, 46, 257-271.

Keith, M., K. M. Haase, U. Schwarz-Schampera, R. Klemd, S. Petersen, and W. Bach (2014), Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents, Geology, 42(8), 699-702.

Kerrich, R. (1993), Perspectives on genetic models for lode gold deposits, Mineralium Deposita, 28, 362-365.

Kesler, S. E. (2005), Ore-forming fluids, Elements, 1(1), 13-18.

Khashgerel, B.-E., R. O. Rye, J. W. Hedenquist, and I. Kavalieris (2006), Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia, Economic Geology, 101(3), 503-522.

Klemm, L. M., T. Pettke, C. A. Heinrich, and E. Campos (2007), Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids, Economic Geology, 102(6), 1021-1045.

Knopf, A. (1929), The mother lode system of California, US Government Printing Office.

Knutson, J., J. Ferguson, W. Roberts, T. Donnelly, and I. Lambert (1979), Petrogenesis of the copper-bearing breccia pipes, Redbank, Northern Territory, Australia, Economic Geology, 74(4), 814-826.

Kuehn, C. A., and A. W. Rose (1995), Carlin gold deposits, Nevada; origin in a deep zone of mixing between normally pressured and overpressured fluids, Economic Geology, 90(1), 17-36.

Kwan, K., I. Johnson, J. M. Legault, K. Khaled, and A. Prikhodko (2019), Understanding Archean greenstone-hosted lode gold mineralization in Ontario Canada through helicopter TDEM data, ASEG Extended Abstracts, 2019(1), 1-4.

Lawley, C. J., B. Dubé, P. Mercier-Langevin, B. Kjarsgaard, R. Knight, and D. Vaillancourt (2015), Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Nunavut, Canada, Journal of Geochemical Exploration, 155, 33-55.

Leube, A., W. Hirdes, R. Mauer, and G. O. Kesse (1990), The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization, Precambrian research, 46(1-2), 139-165.

Li, J., K. QIN, and G. LI (2006), The basic characteristics of gold-rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid, Acta Petrologica Sinica, 22, 678-688.

Liang, P., L. Chen, R. Li, Y. Xie, C. Wu, and C.-K. Lai (2021), In-situ element geochemical and sulfur isotope signature of pyrite and chalcopyrite: Constraints on ore-forming processes of the Laoshankou iron oxide-copper (-gold) deposit, northern East Junggar, Ore Geology Reviews, 139, 104510.

Lin, S., K. Hu, J. Cao, T. Bai, Y. Liu, and S. Han (2021), An in situ sulfur isotopic investigation of the origin of Carlin-type gold deposits in Youjiang Basin, southwest China, Ore Geology Reviews, 134, 104187.

Lindsey, M. (2000), The magmatic and structural setting of the Brewery Creek gold mine, central Yukon, Yukon Exploration and Geology 1999.

Long, X., N. Hayward, G. Begg, F. Minlu, W. Fangzheng, and F. Pirajno (2005), The Jinxi–Yelmand high-sulfidation epithermal gold deposit, Western Tianshan, Xinjiang Province, PR China, Ore Geology Reviews, 26(1-2), 17-37.

Maepa, F. M., and R. S. Smith (2020), Examining the controls on gold deposit distribution in the Swayze greenstone belt, Ontario, Canada, using multi-scale methods of spatial data analysis, Ore Geology Reviews, 125, 103671.

Maffini, M. N., K. Wemmer, S. Radice, S. Oriolo, F. D'Eramo, J. Coniglio, M. Demartis, and L. Pinotti (2017), Polymetallic (Pb-Zn-Cu-Ag±Au) vein-type deposits in brittle-ductile transtensional shear zones, Eastern Sierras Pampeanas (Argentina): Age constraints and significance for the Late Paleozoic tectonic evolution and metallogenesis, Ore Geology Reviews, 89, 668-682.

Mahmoud, A., V. Dyakonov, and A. Kotelnikov (2019), Genesis and evolution of the Hamama volcanic massive sulphide deposits, Egypt, paper presented at IOP Conference Series: Materials Science and Engineering, IOP Publishing.

Mahmoud, A., V. Dyakonov, A. Kotelnikov, M. Dawoud, and H. El-Dokouny (2021), Vertical Zoning and Geochemical Anomaly Fields of the Hamama Gold Deposit in the Central Part of Egypt’s Eastern Desert, Geology of Ore Deposits, 63(2), 156-171.

Mair, J. L., C. J. Hart, and J. R. Stephens (2006), Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism, Geological Society of America Bulletin, 118(3-4), 304-323.

Maloof, T. L., T. Baker, and J. F. Thompson (2001), The Dublin gulch intrusion-hosted gold deposit, Tombstone plutonic suite, Yukon territory, Canada, Mineralium Deposita, 36, 583-593.

Marsh, E. E., R. J. Goldfarb, C. J. Hart, and C. A. Johnson (2003), Geology and geochemistry of the Clear Creek intrusion-related gold occurrences, Tintina Gold Province, Yukon, Canada, Canadian Journal of Earth Sciences, 40(5), 681-699.

Maryono, A. (1998), Carlin-Style Sediment Hosted Gold Deposits: An Exploration opportiuniyy, in Beritan Ahli Geologi Indonesia edited, p. 14.

McPhie, J., and R. Cas (2015), Volcanic successions associated with ore deposits: Facies characteristics and ore–host relationships, in The encyclopedia of volcanoes, edited, pp. 865-879, Elsevier.

Mehrabi, B., E. T. Fazel, and B. Yardley (2019), Ore geology, fluid inclusions and OS stable isotope characteristics of Shurab Sb-polymetallic vein deposit, eastern Iran, Geochemistry, 79(2), 307-322.

Meinert, L. D. (1992), Skarns and skarn deposits, Geoscience Canada.

Meinert, L. D. (1998), A review of skarns that contain gold, Mineralogical Association of Canada Short Course Series, 26, 359-414.

Meinert, L. D., G. M. Dipple, and S. Nicolescu (2005), World skarn deposits.

Mernagh, T. P. (2001), A fluid inclusion study of the Fosterville Mine: a turbidite-hosted gold field in the Western Lachlan Fold Belt, Victoria, Australia, Chemical Geology, 173(1-3), 91-106.

Meyer, C. (1988), Ore deposits as guides to geologic history of the Earth, Annual Review of Earth and Planetary Sciences, Vol. 16, p. 147, 16, 147.

Morales, M. J., R. C. F. e Silva, L. M. Lobato, S. D. Gomes, C. C. Gomes, and D. A. Banks (2016), Metal source and fluid–rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil, Ore Geology Reviews, 72, 510-531.

Morris, H. T., and D. P. Cox (1986), Descriptive model of polymetallic replacement deposits, Mineral deposit models: US Geological Survey Bulletin, 1693, 99-100.

Mountain, B., and T. M. Seward (2003), Hydrosulfide/sulfide complexes of copper (I): experimental confirmation of the stoichiometry and stability of Cu (HS) 2− to elevated temperatures, Geochimica et Cosmochimica Acta, 67(16), 3005-3014.

Müller, D., and D. I. Groves (1997), Potassic igneous rocks and associated gold-copper mineralization, Springer.

Muntean, J. L., J. S. Cline, A. C. Simon, and A. A. Longo (2011), Magmatic–hydrothermal origin of Nevada’s Carlin-type gold deposits, Nature geoscience, 4(2), 122-127.

Nand, A. (1989), The geochemsitry of the Fosterville Goldfield, Victoria, University Of Tasmania.

Nesbitt, B. (1996), Applications of oxygen and hydrogen isotopes to exploration for hydrothermal mineralization: Society of Economic Geologists Newsletter no. 27.

Ngiamte, G., O. Okunlola, C. Suh, D. Ilouga, R. Ngatcha, N. Njamnsi, N. Afahnwie, and S. Tufion (2023), Oxygen Isotope Geochemistry as a Tool in the Exploration for BIF-hosted Iron Ore Occurrences within the Precambrian Mineral Belt of Southern Cameroon, Northwestern Margin of the Congo Craton: A Review, Geology of Ore Deposits, 65(6), 605-624.

Niiranen, T. (2005), Iron Oxide-Copper-Gold Deposits in Finland: case studies from the Peräpohja schist belt and, University of Helsinki

Norton, J. J. (1989), Gold-bearing polymetallic veins and replacement deposits, US Government Printing Office.

Nutt, C., and A. Hofstra (2007), Bald Mountain gold mining district, Nevada: A Jurassic reduced intrusion-related gold system, Economic Geology, 102(6), 1129-1155.

Ohmoto, H. (1972), Systematics of sulfur and carbon isotopes in hydrothermal ore deposits, Economic Geology, 67(5), 551-578.

Ohmoto, H. (1986), Stable isotope geochemistry of ore deposits, Reviews in Mineralogy and Geochemistry, 16(1), 491-559.

Orris, G., J. Bliss, J. Hammarstrom, and T. Theodore (1987), Description and grades and tonnages of gold-bearing skarnsRep. 2331-1258, US Geological Survey.

Pal, N., and B. Mishra (2002), Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit of Hutti, Eastern Dharwar Craton, India, Mineralium Deposita, 37, 722-736.

Panteleyev, A. (1996), Epithermal Au-Ag-Cu high sulphidation (H04), Selected British Columbia mineral deposit profiles, 2, 1996-1913.

Pereira, M. L., V. Zanon, I. Fernandes, L. Pappalardo, and F. Viveiros (2024), Hydrothermal alteration and physical and mechanical properties of rocks in a volcanic environment: A review, Earth-Science Reviews, 104754.

Phillips, G., and R. Powell (2010), Formation of gold deposits: a metamorphic devolatilization model, Journal of Metamorphic geology, 28(6), 689-718.

Piercey, S. J., J. G. Hinchey, and G. W. Sparkes (2023), Volcanogenic massive sulfide (VMS) deposits of the Dunnage Zone of the Newfoundland Appalachians: setting, styles, key advances, and future research, Canadian Journal of Earth Sciences, 60(8), 1104-1142.

Pirajno, F. (2012), The geology and tectonic settings of China's mineral deposits, Springer Science & Business Media.

Pokrovski, G. S., M. A. Kokh, D. Guillaume, A. Y. Borisova, P. Gisquet, J.-L. Hazemann, E. Lahera, W. Del Net, O. Proux, and D. Testemale (2015), Sulfur radical species form gold deposits on Earth, Proceedings of the National Academy of Sciences, 112(44), 13484-13489.

Pollard, P. J. (2000), Evidence of a magmatic fluid and metal source for Fe oxide Cu-Au mineralization, Hydrothermal iron oxide copper-gold and related deposits: A global perspective, 1, 27-41.

Porter, T. (2010), Current understanding of iron oxide associated-alkali altered mineralised systems: Part I—an overview, Hydrothermal iron oxide copper–gold and related deposits: a global perspective, 3, 5-32.

Poulsen, K., and M. Hannington (1996), Volcanic-associated massive sulphide gold, Geology of Canada(8), 183-196.

Poulsen, K. H., F. Robert, and B. Dubé (2000), Geological classification of Canadian gold deposits, Bulletin of the Geological Survey of Canada, 540, 1-106.

Prihatmoko, S., and A. Idrus (2020), Low-sulfidation epithermal gold deposits in Java, Indonesia: Characteristics and linkage to the volcano-tectonic setting, Ore Geology Reviews, 121, 103490.

Proffett, J. M. (2003), Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina, Economic Geology, 98(8), 1535-1574.

Radtke, A. S. (1985), Geology of the Carlin gold deposit, NevadaRep. 2330-7102, US Government Printing Office.

Ramsay, W., F. Bierlein, D. Arne, and A. VandenBerg (1998), Turbidite-hosted gold deposits of Central Victoria, Australia: their regional setting, mineralising styles, and some genetic constraints, Ore Geology Reviews, 13(1-5), 131-151.

Randive, K., K. Hari, M. Dora, D. Malpe, and A. Bhondwe (2014), Study of fluid inclusions: methods, techniques and applications, Geological Magazine, 29(1 and 2), 19-28.

Rhys, D. A., P. D. Lewis, and J. V. Rowland (2020), Structural controls on ore localization in epithermal gold-silver deposits: a mineral systems approach.

Rice, C. M., R. Harmon, and T. Shepherd (1985), Central City, Colorado; the upper part of an alkaline porphyry molybdenum system, Economic Geology, 80(7), 1769-1796.

Richards, J. P., and A. H. Mumin (2013), Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu±Mo±Au deposits, Geology, 41(7), 767-770.

Ridley, J. (2013), Ore deposit geology, Cambridge University Press.

Robert, F., K. Poulsen, and B. Dubé (1997), Gold deposits and their geological classification, paper presented at Proceedings of Exploration.

Robert, F., R. Brommecker, B. T. Bourne, P. J. Dobak, C. J. McEwan, R. R. Rowe, and X. Zhou (2007), Models and exploration methods for major gold deposit types, paper presented at Proceedings of exploration 07 Fifth Decennial International Conference on Mineral Exploration.

Rodriguez-Mustafa, M. A., A. C. Simon, I. del Real, J. F. Thompson, L. D. Bilenker, F. Barra, I. Bindeman, and D. Cadwell (2020), A continuum from iron oxide copper-gold to iron oxide-apatite deposits: Evidence from Fe and O stable isotopes and trace element chemistry of magnetite, Economic Geology, 115(7), 1443-1459.

Rohrlach, B. D., R. R. Loucks, and T. Porter (2005), Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines, Super porphyry copper and gold deposits: A global perspective, 2, 369-407.

Rye, R. O. (2005), A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems, Chemical Geology, 215(1-4), 5-36.

Rui-Zhong, H., S. Wen-Chao, B. Xian-Wu, T. Guang-Zhi, and A. H. Hofstra (2002), Geology and geochemistry of Carlin-type gold deposits in China, Mineralium Deposita, 37, 378-392.

Ruggieri, G., P. Lattanzi, S. S. Luxoro, R. Dessi, M. Benvenuti, and G. Tanelli (1997), Geology, mineralogy, and fluid inclusion data of the Furtei high-sulfidation gold deposit, Sardinia, Italy, Economic Geology, 92(1), 1-19.

Sänger-von Oepen, P., G. Friedrich, and A. Kisters (1990), Comparison between the fluid characteristics of the Rodalquilar and two neighbouring epithermal gold deposits in Spain, Mineralium Deposita, 25, S36-S41.

Sangster, D. (1984), Felsic intrusion-associated silver-lead-zinc veins, Canadian mineral deposit types, a geological synopsis: Geological Survey of Canada Report(36), 66.

Sawkins, F. J. (1972), Sulfide ore deposits in relation to plate tectonics, The Journal of Geology, 80(4), 377-397.

Schirra, M., O. Laurent, T. Zwyer, T. Driesner, and C. A. Heinrich (2022), Fluid evolution at the Batu Hijau porphyry Cu-Au deposit, Indonesia: Hypogene sulfide precipitation from a single-phase aqueous magmatic fluid during chlorite–white-mica alteration, Economic Geology, 117(5), 979-1012.

Scott, A.-M., and Y. Watanabe (1998), “Extreme boiling” model for variable salinity of the Hokko low-sulfidation epithermal Au prospect, southwestern Hokkaido, Japan, Mineralium Deposita, 33, 568-578.

Seal, R. R. (2006), Sulfur isotope geochemistry of sulfide minerals, Reviews in mineralogy and geochemistry, 61(1), 633-677.

Seccombe, P., J. Ju, A. Andrew, B. Gulson, and K. Mizon (1993), Nature and evolution of metamorphic fluids associated with turbidite-hosted gold deposits: Hill End goldfield, NSW, Australia, Mineralogical Magazine, 57(388), 423-436.

Shanks, W. C., and R. Thurston (2012), Volcanogenic massive sulfide occurrence model, US Department of the Interior, US Geological Survey.

Shelton, K. L., T. A. McMenamy, E. H. v. Hees, and H. Falck (2004), Deciphering the complex fluid history of a greenstone-hosted gold deposit: fluid inclusion and stable isotope studies of the Giant mine, Yellowknife, Northwest Territories, Canada, Economic Geology, 99(8), 1643-1663.

Shi, K., T. Ulrich, K. Wang, X. Ma, S. Li, and R. Wang (2020), Hydrothermal evolution and ore genesis of the Laozuoshan Au skarn deposit, northeast China: Constrains from mineralogy, fluid inclusion, and O–C–S–Pb isotope geochemistry, Ore Geology Reviews, 127, 103879.

Sholeh, A., E. Rastad, D. Huston, J. B. Gemmell, and R. D. Taylor (2016), The Chahnaly low-sulfidation epithermal gold deposit, western Makran volcanic arc, Southeast Iran, Economic Geology, 111(3), 619-639.

Sillitoe, R. (1993), Giant and bonanza gold deposits in the epithermal environment: Assessment of potential genetic factors.

Sillitoe, R. H. (2003), Iron oxide-copper-gold deposits: an Andean view, Mineralium Deposita, 38, 787-812.

Sillitoe, R. H., M. D. Hannington, and J. F. Thompson (1996), High sulfidation deposits in the volcanogenic massive sulfide environment, Economic geology, 91(1), 204-212.

Sillitoe, R. H., and J. F. Thompson (1998), Intrusion–Related Vein Gold Deposits: Types, Tectono‐Magmatic Settings and Difficulties of Distinction from Orogenic Gold Deposits, Resource Geology, 48(4), 237-250.

Simon, G., S. E. Kesler, and S. Chryssoulis (1999), Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in Carlin-type deposits, Economic Geology, 94(3), 405-421.

Skirrow, R. G. (2022), Iron oxide copper-gold (IOCG) deposits–A review (part 1): Settings, mineralogy, ore geochemistry and classification, Ore Geology Reviews, 140, 104569.

Skirrow, R. G., J. Murr, A. Schofield, D. L. Huston, S. van der Wielen, K. Czarnota, R. Coghlan, L. M. Highet, D. Connolly, and M. Doublier (2019), Mapping iron oxide Cu-Au (IOCG) mineral potential in Australia using a knowledge-driven mineral systems-based approach, Ore Geology Reviews, 113, 103011.

Soloviev, S. G., S. G. Kryazhev, S. S. Dvurechenskaya, and V. I. Uyutov (2019), Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia, Ore Geology Reviews, 112, 103039.

Soloviev, S. G., S. G. Kryazhev, and S. S. Dvurechenskaya (2013), Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee–Monto oxidized Au–(Cu) skarn and porphyry deposit, Polar Ural, Russia, Mineralium Deposita, 48(5), 603-627.

Stefánsson, A., and T. M. Seward (2004), Gold (I) complexing in aqueous sulphide solutions to 500 C at 500 bar, Geochimica et Cosmochimica Acta, 68(20), 4121-4143.

Storey, C. D., and M. Smith (2017), Metal source and tectonic setting of iron oxide-copper-gold (IOCG) deposits: Evidence from an in situ Nd isotope study of titanite from Norrbotten, Sweden, Ore Geology Reviews, 81, 1287-1302.

Su, W., H. Zhang, R. Hu, X. Ge, B. Xia, Y. Chen, and C. Zhu (2012), Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes, Mineralium Deposita, 47, 653-662.

Tajeddin, H. A., E. Rastad, A. Yaghoubpour, S. Maghfouri, J. M. Peter, R. Goldfarb, and M. Mohajjel (2019), The Barika gold-bearing Kuroko-type volcanogenic massive sulfide (VMS) deposit, Sanandaj-Sirjan zone, Iran, Ore Geology Reviews, 113, 103081.

Tan, Q.-P., Y. Xia, X. Wang, Z.-J. Xie, and D.-T. Wei (2017), Carbon-oxygen isotopes and rare earth elements as an exploration vector for Carlin-type gold deposits: A case study of the Shuiyindong gold deposit, Guizhou Province, SW China, Journal of Asian Earth Sciences, 148, 1-12.

Taylor, B. E. (1987), Stable isotope geochemistry of ore-forming fluids, Mineral. Assoc. Canada, Short Course Handbook, 13, 337-445.

Taylor, B. E. (2007), Epithermal gold deposits, Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 113-139.

Theodore, T. G. (1990), Gold-bearing skarns, US Government Printing Office.

Thompson, J. F., and R. J. Newberry (2000), Gold deposits related to reduced granitic intrusions.

Titley, S. R. (1982), Advances in geology of the porphyry copper deposits: Southwestern North America.

Ulrich, T., and C. A. Heinrich (2002), Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina, Economic Geology, 97(8), 1865-1888.

Ulrich, T., D. Günther, and C. A. Heinrich (2001), The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina, Economic Geology, 96(8), 1743-1774.

Vallance, J., L. Fontboté, M. Chiaradia, A. Markowski, S. Schmidt, and T. Vennemann (2009), Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern Ecuador), Mineralium Deposita, 44, 389-413.

Vearncombe, J., and M. Zelic (2015), Structural paradigms for gold: do they help us find and mine?, Applied Earth Science, 124(1), 2-19.

Wang, Y., Q. Zeng, L. Zhou, S. Chu, and Y. Guo (2016), The sources of ore-forming material in the low-sulfidation epithermal Wulaga gold deposit, NE China: Constraints from S, Pb isotopes and REE pattern, Ore Geology Reviews, 76, 140-151.

Weihed, P., N. Arndt, K. Billström, J.-C. Duchesne, P. Eilu, O. Martinsson, H. Papunen, and R. Lahtinen (2005), 8: Precambrian geodynamics and ore formation: The Fennoscandian Shield, Ore Geology Reviews, 27(1-4), 273-322.

White, N., M. Leake, S. McCaughey, and B. Parris (1995), Epithermal gold deposits of the southwest Pacific, Journal of geochemical exploration, 54(2), 87-136.

White, N. C., and J. W. Hedenquist (1995), Epithermal gold deposits: styles, characteristics and exploration, SEG newsletter(23), 1-13.

Williams, P. J., M. D. Barton, D. A. Johnson, L. Fontboté, A. De Haller, G. Mark, N. H. Oliver, and R. Marschik (2005), Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin.

Wilkinson, J. (2001), Fluid inclusions in hydrothermal ore deposits, Lithos, 55(1-4), 229-272.

Wu, Y., and M. Kainan (2016), Advances in Skarn Type Gold Deposits, International Journal of Earth Sciences and Engineering, 1916-1921.

Wyman, D. A., K. F. Cassidy, and P. Hollings (2016), Orogenic gold and the mineral systems approach: Resolving fact, fiction and fantasy, Ore Geology Reviews, 78, 322-335.

Yan, J., Mavrogenes, J. A., Liu, S., & Coulson, I. M. (2020), Fluid properties and origins of the Lannigou Carlin-type gold deposit, SW China: Evidence from SHRIMP oxygen isotopes and LA-ICP-MS trace element compositions of hydrothermal quartz. Journal of Geochemical Exploration, 215, 106546.

Zengqian, H., K. Zaw, Q. Xiaoming, Y. Qingtong, Y. Jinjie, X. Mingji, F. Deming, and Y. Xianke (2001), Origin of the Gacun volcanic-hosted massive sulfide deposit in Sichuan, China: Fluid inclusion and oxygen isotope evidence, Economic Geology, 96(7), 1491-1512.

Zhang, D.-h., S.-h. Zhou, T.-f. Wan, B.-b. Xi, and J.-p. Li (2011), Depth of ore deposit formation and prognosis of deep-seated ore deposits, Geological Bulletin of China, 30(8), 1509-1518.

Zheng, Y.-c., S.-h. Tian, Z.-q. Hou, Q. Fu, and D.-c. Zhu (2020), Magmatic and structural controls on the tonnage and metal associations of collision-related porphyry copper deposits in southern Tibet, Ore Geology Reviews, 122, 103509.

Zhong, J., Y.-J. Chen, J. Chen, J.-P. Qi, and M.-C. Dai (2018), Geology and fluid inclusion geochemistry of the Zijinshan high-sulfidation epithermal Cu-Au deposit, Fujian Province, SE China: Implication for deep exploration targeting, Journal of Geochemical Exploration, 184, 49-65.

Zoheir, B., and P. Weihed (2014), Greenstone-hosted lode-gold mineralization at Dungash mine, Eastern Desert, Egypt, Journal of African Earth Sciences, 99, 165-187.

Downloads

Published

2024-12-31